人们早已经习惯在打开一个网页的同时,可能会被推送各类商品广告,有时我们会调侃说自己又“被大数据”了。但很少有人知道,为了让这则毫不起眼的商品广告出现在适合的屏幕上,屏幕背后已经上演过一出蔚为壮观的群集大战:
不同广告代理公司的系统对“你”进行识别和计算,根据识别结果各自把出价信息发送到广告竞价平台,广告竞价平台通过比价选择出价最高者,出价最高者获得这个广告展示机会,最终一则商品广告出现在“你”的屏幕上。
这种通过实时竞价方式购买每一次曝光机会的广告形态,是互联网时代广告主在做重定向精准投放时最常用的方式,也是完全依赖“算法”的一种广告形态,因为以上那一连串竞价动作都必须在一秒钟以内完成。
计算驱动下的精准投放
尽管不知道“你”是谁,但在你加载一个网页时,系统已经在极短的时间里从2个维度对“你”进行了“计算”:花多少钱能够且值得购买这个为你展示广告的机会;购买成功后,广告以什么样的形式出现在你的屏幕上更有可能激发你的购买欲。
“在广告投放的过程里,引擎和算法会对具体给你投放什么广告有一个推荐。比如你晚上在网上商店看到的是一双红色高跟鞋,看了半天没买就出去了,我们再投给你的广告,可能是一些红色高跟鞋,也可能是一双靴子,我们会有一个人工智能的引擎去预测。”
Criteo中国区总裁郑家强解释说,所有展示的广告都以海量数据和智能算法为基础,对消费者的具体行为和购买意愿进行分类,海量数据来自PC端的Cookie,移动端则根据ID做预测。
在看似简单的广告投放过程中,“算法”几乎无处不在。“出价算法”去实时衡量每一位用户的价值,给出恰当的价格去竞价;“预测算法”寻找到合适的用户后,投放那些更可能激发用户购买的产品广告;“推荐算法”则是量体裁衣给用户推荐适合的相关产品。
只做模糊识别,不做精准画像
在《人工智能时代》一书中,作者杰瑞·卡普兰有这样一段描述:“任何时候,在你买东西、访问网站或者发表评论时,都有一支由电子智能体组成的雇佣军在暗处‘观察’着你。”
在互联网时代,企业穷尽办法获取信息去为用户画像,力求比用户更懂用户,但“用户画像”往往让用户没有安全感。
做用户画像的公司通常从互联网和社交媒体中获取用户的性别、教育程度、收入水平、社交喜好等诸多信息,再根据这些数据信息推送商品广告。郑家强认为这种“用户画像”的方式相比于重定向的精准投放,其实并不准确,因为大多数时候是在做猜测。
而回到文章的最开始“算法怎么知道我们在购物车里放了什么?”,其实随着机器学习能力的提升,广告的投放更加精准,不是“算法”知道我们在购物车里放了什么,而是算法潜移默化在影响我们的购买。