很少有人料到,人工智能能和人类围棋高手一决高下的日子到得如此之早。现在的问题是:接下来会怎样?对关注科技多于关注围棋的人来说,计算机能否在围棋上打败所有人已不太重要,重要的是:人工智能全面达到甚至超越人类智能的时候是否快到了?
四类“智能系统”
AlphaGo(阿尔法围棋)在“训练”阶段靠“学习算法”从训练数据(输入)中总结出一个“下棋模型”(输出);在学成之后转入“实战”阶段,这时的输入就是对手的走法,而输出是由下棋模型(作为算法)选择的走法。
这种学习预设了一个“计算”(在AlphaGo里就是理想的围棋模型)作为终点,也就是说每个局面都有一个最好的下法,而学习就是找到或接近这一下法的过程。
尽管“深度学习”的算法可以用在不同领域中,其每个具体应用仍是针对一个给定的输入输出关系的。比如,AlphaGo还能在围棋上继续提高,但现在再教它学象棋已是不可能的,更不要说教它学兵法了。这显然和人类学习所体现的“触类旁通”或“功夫在棋外”完全不同。
为了描述的直观性,让我们假定一个系统的总技能水平可以度量,比如说是它能解决的问题的数量。这样一来,系统的学习能力就体现为这个量和时间的关系。
我们假设以“蓝线族”、“紫线族”、“绿线族”、“红线族”来区分四类不同的系统:
(1)“蓝线族”对应于一个完全没有学习能力的系统。这样的系统仍然可能有很高的技能(如“深蓝”),但其技能完全来自于初始设计,而和系统的经验无关。传统的计算系统都属于这一类,其优点是可靠、高效,但没有灵活性、适应性和创造性等。
(2)“紫线族”对应于一个学习能力有限的系统。这里“有限”是指系统的总技能会趋近于一个常量,即这个学习系统最终会转化成一个计算系统。现有的“机器学习”系统(包括AlphaGo)大体是属于这一类。这种系统在学习阶段有适应性,但模型形成后就基本不变了。
(3)“绿线族”对应于一个学习能力基本固定的系统。这种系统的“智能”(元能力)是先天设计的,且基本保持稳定,但在习得的“技能”(具体能力)的增长上没有限制,最后在输入输出关系上也不会转变成一个计算系统。纳思和其他一些AGI系统属于这一类。
(4)“红线族”对应于一个学习能力本身在增长的系统。这大致上就是库兹韦尔和博斯特罗姆所说的“超人智能”了。
这四类系统的实质性差别是:系统整体的输入输出关系是通过设计确定的还是通过学习得到的,以及系统的学习能力是否随时间而有根本性改变。
“超人智能”还是个概念
按上述分类标准,人类大致属于“绿线族”。这是因为一个人在正常情况下总是可以学习新技能或修改已有技能的,但不能对自己的思维规律做根本性修改。
因为主流人工智能的目标是拥有或超过人类技能,其中大多成果属于“蓝线族”;机器学习以技能习得为己任,造出的系统基本是“紫线族”;“绿线族”目前是通用人工智能(AGI)的研究范围,应用技术尚未成熟。目前并没有人在研发“红线族”的系统,而其他三类系统的进展也不会“跨界”,因为它们对应于不同的技术,而并非同一个技术的不同发展水平。
人类智能当然未必是智能的最高形式,所以“超人智能”是个有意义的概念,尽管我们至今尚未得到任何关于其确实存在的证据,但即使是作为一个纯粹理论上的可能性来说,目前相关的议论仍充斥着大量的概念错误,如“智能”与“技能”的混淆以及不同类的“学习系统”之间的混淆。
在物种进化的尺度上说,人类智能的确是从低智能的动物中发展出来的,但这不意味着这种能力会无限制地继续发展。实际上,在任何领域中假定某个量以往的增长趋势会自然推广到未来的预测都是不可靠的。一个流行的说法是人工智能会通过“给自己编程序”来进化,但这是缺乏计算机知识所导致的误解。在设计一个计算机系统时,“程序”和“数据”的区分常常是相对的,而这二者的功能也或多或少可以互相替代。允许程序自我修改的程序设计语言早已存在几十年了(如Lisp和Prolog),但只要这种修改是基于系统过去经验的,那么这种“自我编程”和通过修改知识来改变系统行为并无本质区别(仅仅是改变了“知识”和“元知识”的区分方式而已) ,而且未必是个更好的设计。这样的“自我编程系统”仍属于“绿线族”。
随着计算机的发展,人工智能系统的运行速度、存储容量、数据拥有量都会继续大幅提升,这会使得计算机在越来越多的技能上赶上以至超过人类,但这都不意味着计算机因此拥有了超人的智能。这就好比把同一个程序系统从一个普通计算机上移植到一台超级计算机上:这以后它自然在解决问题的能力上有极大提高,但这个系统并没有因此而变得“更聪明”。真能达到“红线族”的计算机系统在我看已经不是“人工智能”,而应该被称为“人工神灵”了。
我的观点是:通用人工智能将会在“元知识”层面上(即基本工作原理)和人类大致相当,既不更高也不更低。如果这种系统真能造出来,那说明我们已经基本搞清了智能是怎么回事。在那以后即使计算机在大量具体问题的解决能力上超过人类,并且可以通过学习进行自我提高,人类仍然可以根据其工作原理(包括其学习过程的原理)寻找用其利避其害的办法。
注:本文原载于微信公众号“赛先生”(微信号:iscientists),早报经授权后转载,有删改。
王培 美国天普大学计算机与信息科学系